Relationship between Zeros and Coefficients

IMPORTANT

Relationship between Zeros and Coefficients: Overview

This topic covers concepts, such as, Relation between Roots and Coefficients of a Quadratic Equation etc.

Important Questions on Relationship between Zeros and Coefficients

HARD
IMPORTANT

If   α , β   are the roots of x2-px+1=0, and γ, δ are roots of x2+qx + 1 = 0,  then α-γβ-γα+δβ+δ is equal to

MEDIUM
IMPORTANT

If α,β are the roots of the equation, x-ax-b+c=0, find the roots of the equation, x-αx-β=c

HARD
IMPORTANT

If one root of the equation  x 2 +px+q=0  is the square of the other, then

MEDIUM
IMPORTANT

In a triangle  PQR,R=π2, if tanP2 and tanQ2  are distinct the roots of the equation   a x 2 +bx+c=0(a0), then –

MEDIUM
IMPORTANT

In a triangle PQR,R=π2, if tan(P2) and tan(Q2) are the roots of the equation   a x 2 +bx+c=0( a0 ) then

EASY
IMPORTANT

Let α, β be the roots of the equation  x2px+r=0 and α2, 2β be the roots of the equation x 2 qx+r=0 . Then the value of r is

MEDIUM
IMPORTANT

Let x2+6x+4=0 be any quadratic equation and α,β are roots of that equation then, α34β24+α32β26+2α33β25α31β20+α28β23+3α30β21+3α29β22=

MEDIUM
IMPORTANT

The roots of the equation x2+px+q=0 are p and q such that p1, then

EASY
IMPORTANT

If the roots of the equation x2+bx+c=0 are α & 1α, then the value of c is

HARD
IMPORTANT

If a,β are roots of the equation 4x2+2x-1=0 then α4+β4+4α2+2α is equal to

MEDIUM
IMPORTANT

If tan15° and tan30° are the roots of the equation x2+px+q=0, then pq=

HARD
IMPORTANT

Let α and β are roots of equation 7x2-5x-1=0, then limn r=0n17α-5r+17β-5r is:

MEDIUM
IMPORTANT

Let α and β be the roots of 6x2-2x+1=0 and Sn=αn+βn, then limnk=1nSk is equal to

HARD
IMPORTANT

If ax2-2bx+15=0, a,bR had repeated roots α and the equation x2-2bx+21=0 had roots α and β, then α2+β2 is

MEDIUM
IMPORTANT

If α,β are the roots of ax2+bx+c=0 then αaβ+b3-βaα+b3=

EASY
IMPORTANT

Let α,β are real number such that α2,β are the roots of the equation x2-px+8=0 and α,β2 are the roots of the equation x2-qx+1=0

then p+q is

MEDIUM
IMPORTANT

If one of the root of the equation x2+xfa+a=0 is the cube of the other for all xR then fx

EASY
IMPORTANT

If the difference of the squares of the roots of the equation x2-6x+q=0 is 24, then the value of q is

EASY
IMPORTANT

If α and β are the roots of the equation 2x2+5x+k=0, and 4α2+β2+αβ=23, then which of the following is true?

HARD
IMPORTANT

If α and β are the roots of equation x2-a(x+1)-b=0, then α2+2α+1α2+2α+b+β2+2β+1β2+2β+b=